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ABSTRACT

The biquadratic Diophantine equation with five unknowns represented by xt - y4 = 5(Z2 —w’ 7T % s analysed

for finding its non-zero distinct integral solutions. Introducing the linear transformations
X=u+v,y=u—v,z=2u+v,w =2u—v and employing the method of factorization different patterns of
non zero distinct integer solutions of the equation under the above equation are obtained. A few interesting relations
between the integral solutions and the special numbers namely Polygonal numbers, Pyramidal numbers, Centered

Polygonal numbers, Centered Pyramidal numbers, Thabit-ibn-Kurrah number, Star number,Gnomonic number are
exhibited.
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NOTATIONS:
Special Numbers Notations Definitions

n—1)(m-2
Regular Polygonal number by n(l+ %)
Pronic Number P n(n+1)
Gnomonic Number G, 2n—1

2

n (n+1

Pentagonal Pyramidal Number Pn5 %
Star Number S, 6n(n—1)+1
Woodall Number w, n2" —1
Thabit-ibn-Kurrah Number 1K, 32")-1
Centered Hexadecagonal Number Ct,., 8n(n+1)+1
Stella Octangula number ) SO, n(2n2 -1)
Kynea number Ky, 2n+ 1)2 -2
Centered hexagonal Pyramidal number CIDn6 —n3

I. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic
Diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians
since antiquity [1-2]. In this context one may refer [3-10] for various problems on the biquadratic Diophantine
equations. However, often we come across homogeneous biquadratic equations and as such one may require its
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integral solution in its most general form. This paper concern with the homogeneous biquadratic equation with five
unknowns x* — y* = 5(z* — w*)T? for determining
its infinitely many non-zero integral solutions. Also a few interesting properties among the solutions are presented.

II. METHOD OF ANALYSIS
The biquadratic diophantine equation with five unknowns to be solved for getting
non-zero integral solution is

xt =yt =522 -wHT? (1)
On substituting the linear transformations
X=u+v,y=u—-v,z=2u+v,2w=2u—-v )
in (1), it leads to
2 2 2
u +v =5T 3)

we present below different methods of solving (3) and thus obtain different
pattern of integral solutions to (1).

2.1.Pattern I
Write  u” +v° = (u+iv)(u —iv) 4)
Assume  T(a,b)=a’ +b° =(a+ib)(a—ib) where a,b#0 5)
Write 5 as 5=(2+i)(2—-1i) (6)

Substituting (4),(5) and (6) in (3), we get
(u+iv)(u—iv)= [(2 +1)(2- i)](a +ib)* (a —ib)’
Equating the real and imaginary parts, the values of vand u are given by,
u=u(a,b)=2a’ —2b> —2ab
v=v(a,b)=a’ —b*> +4ab
Substituting these values in (2), we get
x(a,b) =3a* —3b* +2ab
y(a,b)=a’ —b* —6ab
z(a,b) = 5a*> —5b°
w(a,b) =3a* —3b*> —8ab

Thus, these values of X, ), z, W, T represent non-zero distinct integer solutions of (1).

(7

Properties
1. x(a, t3,a ) + 3y(a9t3,g ) - 2W(a’t3,a) =0

2.x°(a, L)t 27y (a, L)~ 8w’ (a, i) =—18x(a,t; ) y(a,t; IW(a,t; )
3.3x(a,t; ) +5y(a,ty,) = z(a,t; ) +3W(a,t; )

4.3x(a,t; )+ y(a,t;,))—z(a,t,,) =0

5.3w(a,ty ) —4y(a,t;,,)—z(a,t;,) =0

6.3[ z(a,t,,) - 2y(a.t,,) | = Sw(a.ty,) — x(a,t;,)

7.272(a, )~ 64x (a, L)~ w (a, ty,) =36x(a,t; ,)z(a,t; Iw(a,t; )
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8. Wat,,)[ 272 (at,,) ~64% (a.t,,) - W (at,) |=X(at, )| 27w (a.t,,) ~64y" (at,,) ~ 2 (a.ty,) ]
9.Ma,t,) [27)63 (at,)+) (at,)-8 (at,, )] =z(a,t, )[x3 (a.t,,)+27) (a,ty,)—8W (arty,, )J

.1.1. REMARK
Write (6) as

(1+2i)(1 - 2i)

(2 +11i)(2 - 117)
25

(2 +29i)(2 - 29i)
169

Following the above procedure, the other choices of solutions to (1) are obtained.

2.2. Pattern I1
Equation (3) can be written as

u? +v? =5T% x1 (8)
Write 1 as
(m* —n® + 2imn)(m*> —n* — 2imn)
1= 2, 22 ©)
(m” +n7)
Substituting (5), (6)and (9) in (8) and using the method of factorization , define
2 2.
utive+i Z +’22’””) (a +ib)’ (10)
m +n
Equating real and imaginary parts of (10), we have
u=u(ah) =~ [ 2a* ~B)p* - ¢°)~Sabpq - 2ab(p’* ~ 4"~ 2pq(a’ ~b°)]
p 1 q (11)
v=v(a,b) = e d [(a2 —b*)(p* —q°)—4abpq +4ab(p* —q*) + 4 pg(a’ —bz)]

To find the integral solutions of (1), substitute @ = (p° +¢*>)A,b = (p* +¢*)B in(11)and (5)
u(4,B)=2(p* —¢*N(4* = B*)=84Bpq(p* +q*) - 2(p* —¢*) 4B - 2pq(4* - B?)

(A4, B)=(p* —q* (A" = B*) = 4A4Bpq(p* +¢*) +4(p" —q")AB +4pg(4’ - B*)
T(4,B)=(p" +q" ) 4" +(p* +q°)' B’

Then the corresponding integral values of X, y,z, w, T satisfying (1) are obtained as

xX(p.q.4,B) = (p" —q")| 3(4* = B*)+ 24B |+ 2pq(p’ +q°)| A" - B* — 6 AB]

¥(p.q.4.B)=(p* —¢")| A* = B> —64B |+ 2pq(p’ +¢*)| A* - B> —24B |

2(p.q: 4, B) =5(p* —¢")| 4 = B |-204Bpg(p’ +¢°)

w(p.q.4,B) = (p* —¢")| 3(4* = B*)~84B |+ 2pq(p’ +¢*)| 4’ = B’ ~24B |

T(p.q.4.B)=(p* +q’)' [ 4 + B’ ]

Properties:
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1'x(paq9A9A)_3y(p9Q7AaA) = 20(p4 _q4)t4,A
2. T(p,q, A, A=) =(p* +q°)*[2P,, +1]
3. 2(p,q, 4, 4) + W(p,q, A, A) - 40(¢" — p*)t, , = 0(mod 20)

2.2.1 REMARK
Also, 1 can be written as either

1+ a-
- 22)1
or 1=i"(-i)"
Following the procedure as presented in Pattern II then the corresponding non-zero integral solutions satisfying (1)
are obtained as

x(n,a,b) = (3a* — 3b* + 2ab) cos% 4 (a® —b* —6ab) sin%

1

y(n,a,b) = (a* —b* — 6ab) cos% +(=3a” +3b” - 2ab) sin%
z(n,a,b) = (5a° - 5b2)cos% +(~10ab) sin%

w(n,a,b) = (3a’ - 3b* ~8ab) COS% +(—4a” +4b*> — 6ab) sin%
T(a,b)=a* +b’

2.3.Pattern II1
Equation (3) can be written as

Ixu®> =57 =V (12)
Assume  u(a,b) = 54> —b* = (/54 +b)(N5a —b) (13)
1=(5+2)5-2) (14)

Substituting (13) and (14) in (12) and using the method of factorization, define

(5 +2)5a+b) =5T +v

Equating rational and irrational parts, we get

T(a,b)=5a" +b*> +4ab
v(a,b) =10a” +2b*> +10ab

Substituting the values of #,V in (2) the non-zero integral distinct points

satisfying (1) are given by

x(a,b) =15a> +b* +10ab

y(a,b) = —5a*> —3b*> —10ab

z(a,b) = 20a” +10ab

w(a,b) = —4b> —10ab

T(a,b)=5a" +b> +4ab

Properties

1.2x(a,b)+2y(a,b) - z(a,b) —w(a,b) =0
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2.z(a,a+1)-T(a,a+1)—w(a,a+1)=Ky,6 +1

2
a

2
+1)+5w(a,a +1
2 2

4.x(b(b+1))=3T(b(b+1))+2CP°’ =0
5. z(a,1)+5w(a,1)-102P,_, -G, +1)=0
6. 6[y(b,b) - T(b,b)] is a nasty number.

3.z(a, )+80CP’ =0

2.3.1.REMARK
Note that, in addition to (14), one may represent 1 in the following ways:

(V5 + (/5 - 1)
4
(55 +2)(5+/5 - 2)

121
(5+/5 +11)(54/5 - 11)
4

(55 + 1155 -11)
4

(13+/5 + 2)A3/5 = 2) (135 +19)(13/5 =19) (13+/5 +29)(13+/5 - 29)

292 222 22
(A7/5 +1D)A7V5 = 1) (175 +22)A7+/5 - 22)

382 ’ 312 ’
(175 +31)(17/5 -31)

(175 + 38)(17+/5 - 38)

222
Then, proceeding as in the above procedure , other choices of non-zero distinct integer solutions to (1) are
obtained.

2.4.Pattern IV
Equation (3) can be written as

Vi =5T% —u’ (15)

Introducing the linear transformations
T=X+S,u=X+5S (16)
in (15), it is written as
v +208° = (2X) (17)
which is satisfied by

S =2apf,v=20a"- B X =%[2Oa2 +5 ]
To find integer solution replacing @ by 2 and Sby 2/, we get
X =40a” +23°,S =8af (18)
v=80a’ -4/ (19)
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From (18) and (16) the values of T and u are
T(a, B) =400 +2° +8af
u(a, B) =40’ +2° +40ap

Substituting the values of u#,V from (19)and (20) in (2) the corresponding non-zero integral solutions satisfying (1)

(20)

are obtained as

x(a, f) =120 =28 +40af
y(a, B) = -40a> + 6 5° + 4003
z(a, B) =160a” + 803

w(a, f) =84 +80af

T(a,f) =400 +25° +8af

Properties
Lx(a, B) - y(a, ) —z(a, B) + w(a, ) = 0(mod 96)
2. 9(@2% 1) + T(@2%,1) - w(a2“ 1)+ 32(W, +1) =0
3.2(a, B) — x(a, p) + y(a, f) —w(a, ) = 0
4.z2(a’,a+1)-4T(a*,a + )+ w(a’,a +1) =256 P
53x(a,a)+ y(a,a) —2z(a,a) =0
2.4.1. REMARK
It is to be noted that instead of (16) one may consider the linear transformation
T=X-S;u=X-5§
For this choice, the corresponding non-zero distinct integral solutions to (1) are represented below,
x(a, B) =120a> — 28> — 40af3
y(a, ) =—-40a’ + 68> — 400

(e, B) = 160a” —80af
w(a, f) =85> —80ap

T(a,p)=40a” + 24 —8af

2.5.Pattern V
Equation (3) is written as

QRT+vQ2T —v)=w+T)u-T) (1)
which is expressed in the form of ratio as,
”+T_2T—V:Z,ﬁ¢0 22)

2T+v u-T B
This is equivalent to the following two equations
pu—av+(f-2a)T =0
au+ pv—(a+2p)T =0
Applying the method of cross multiplication, we get
u(a,B)=a’ - B +4af
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wa, B) =2af -2a’ + 24’

Ta,p)=a’+p’

Substituting the values of #,V in (2) the non-zero distinct integral points satisfying (1) are given by
x(a, f) =—a’ + B +6ap

wa, B)=3a’ =35 +2ap

z(a, fB) =10ap

w(e, B) = 4a® — 4> +6af

T(a,p)=a’ +
Properties
1. 6[y(0(,ﬂ) +2T(a, ) + x(a, ) — w(a,ﬁ)] is a nasty number.
2.2(a” ,a(a +1)) - x(@’ ,a(a +1)) - 2y(a’ ,a(a +1)) = 5[ SO, + P, |
3.3x(2%,1) + y(2*,1) = TK, —1=0(mod17)
4 w(a(a-1),p)+3T(a(a-1),p)-x(a(a-1),5)—-S, +3 =0(mod8)

5. w(a,(a-1)+4T(a,(a 1) - z(a,(a —1)) = ¢,

+4P, -1

6,a

III. CONCLUSION

It is worth to mention to note that in (2) the transformations for z and w may be considered as
z=2uv+1l,w=2uv—1land z=uv+2,w=uv—2 . For these cases, the values of x,y,T are the same as

above where as the values of z and w changes for every pattern. To conclude one may consider biquadratic equation
with multivariables (=5) and search for the their non-zero distinct integer solutions along with their corresponding

properties.
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